
Chapter one 

Review of Probability 

 
1- Definition: A probabilistic model is a mathematical description of an 

uncertain situation. 

 A probability of an event A: If an experiment has 𝐴1, 𝐴2,……. 𝐴𝑛, 

outcomes, then: 

𝑃𝑟𝑜𝑏(𝐴𝑖) = 𝑃(𝐴𝑖) = lim
𝑁→∞

𝑛(𝐴𝑖)
𝑁

 

Where 𝑛(𝐴𝑖)= no. of times event (outcomes) (𝐴𝑖) occurs 

N= total number of trails. 

2- Not that  

1 ≥ 𝑃(𝐴𝑖) ≥ 0,       and 

�𝑃(𝐴𝑖)
𝑛

𝑖=1

= 1 

If 𝑃(𝐴𝑖) = 1     then  𝐴𝑖 is certain event 

When the sample space Ω has a finite number of equally likely outcomes, so that 

the discrete uniform probability law applies. Then, the probability of any event A 

is given by 

𝑃(𝐴) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐴
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 Ω  

 

3- Conditional Probability:   

Conditional probability provides us with a way to reason about the outcome of 

an experiment, based on partial information. For any event A, gives us the 



conditional probability of A given B, denoted by P(A | B). For example, 

suppose that all six possible outcomes of a fair die roll are equally likely. If we 

are told that the outcome is even, we are left with only three possible outcomes, 

namely, 2, 4, and 6. 

P(the outcome is 6 |the outcome is even) = 1/3 

The definition of conditional probability when all outcomes are equally likely, 

is given by: 

𝑃(𝐴 | 𝐵) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐴 ∩  𝐵
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐵  

Or 

𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)  

Where 𝑃(𝐵) > 0 

Example: We toss a fair coin three successive times. We wish to find the 

conditional probability P(A | B) when A and B are the events 

A = {more heads than tails come up}, B = {1st toss is a head}. 

The sample space consists of eight sequences, 

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}, 

𝑃(𝐵) =
4
8 

𝑃(𝐴 ∩ 𝐵) =
3
8 
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𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵) =

3
8
4
8

= 3/4 

4- Total Probability Theorem 

Let A1,...,An be disjoint events that form a partition of the sample space (each 

possible outcome is included in one and only one of the events A1 ,...,An) and 

assume that P(Ai) > 0, for all i = 1,...,n. Then, for any event B, we have 

P(B) = P(A1 ∩ B) + ··· + P(An ∩ B) 

                           = P(A1)P(B | A1) + ··· + P(An)P(B | An). 

𝑃(𝐴𝑖) =
number of elements of 𝐴𝑖

total number of possible outcomes 

Bayes’ Rule: Let A1, A2,...,An be disjoint events that form a partition of the 

sample space, and assume that P(Ai) > 0, for all i. Then, for any event B such 

that P(B) > 0, we have 

𝑃(𝐴𝑖  | 𝐵) =
𝑃(𝐴𝑖  )𝑃(𝐵|𝐴𝑖)

𝑃(𝐵)  

=
𝑃(𝐴𝑖  )𝑃(𝐵|𝐴𝑖)

𝑃(𝐴1 )𝑃(𝐵|𝐴1)+. . +𝑃(𝐴𝑛 )𝑃(𝐵|𝑛) 

5- Independence: 

We say that the events A1, A2,...,An are independent if 
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6- Independent Trials 

If an experiment involves a sequence of independent but identical stages, we 

say that we have a sequence of independent trials. In the special case where 

there are only two possible results at each stage, we say that we have a 

sequence of independent Bernoulli trials. Consider an experiment that consists 

of n independent tosses of a biased coin, in which the probability of “heads” is 

p, where p is some number between 0 and 1. 

Let us now consider the probability 

p(k)=P(k heads come up in an n-toss sequence), 

 

The probability of any given sequence that contains k heads is 𝑃𝑘(1 − 𝑃)𝑛−𝑘, 

so we have 

𝑃(𝑘) = �𝑛𝑘�𝑃
𝑘(1 − 𝑃)𝑛−𝑘 
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The numbers �𝑛𝑘� (called “n choose k”) are known as the binomial coefficients, 

while the probabilities p(k) are known as the binomial probabilities. 

�𝑛𝑘� =
𝑛!

𝑘! (𝑛 − 𝑘)!                     𝑘 = 1, 2, … … . .𝑛   

Note that the binomial probabilities p(k)must add to 1, thus showing the 

binomial formula: 

��𝑛𝑘�𝑃
𝑘(1 − 𝑃)𝑛−𝑘 = 1

𝑛

𝑘=0

 

 

7- Random variable 

Mathematically, a random variable is a real-valued function of the experimental 

outcome. For example, in an experiment involving the transmission of a 

message, the time needed to transmit the message, the number of symbols 

received in error, and the delay with which the message is received are all 

random variables. 

A random variable is called discrete if its range (the set of values that it can 

take) is finite or at most countably infinite. 

 On the other hand, the random variable that associates with a the numerical 

value 

𝑠𝑖𝑔𝑛(𝑎) = �
1    𝑖𝑓 𝑎 > 0
0   𝑖𝑓 𝑎 = 0
−1   𝑖𝑓 𝑎 < 0

 

Is discrete. 
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8- Probability Mass Function (PMF) 

The most important way to characterize a random variable is through the 

probabilities of the values that it can take. If x is any possible value of X, the 

probability mass of x, denoted 𝑝𝑋(𝑥), is the probability of the event{𝑋 = 𝑥} 

consisting of all outcomes that give rise to a value of X equal to x: 

𝑝𝑋(𝑥) = 𝑃({𝑋 = 𝑥}) 

For example, let the experiment consist of two independent tosses of a fair coin, 

and let X be the number of heads obtained. Then the PMF of X is 

𝑝𝑋(𝑥) = �

1
4

   𝑖𝑓 𝑥 = 0   𝑜𝑟 𝑥 = 2

1/2                   𝑖𝑓 𝑥 = 1
0 =           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Note that 

�𝑝𝑋(𝑥) = 1
𝑥

 

The Bernoulli Random Variable: Consider the toss of a biased coin, which 

comes up a head with probability p, and a tail with probability 1−p. The Bernoulli 

random variable takes the two values 1 and 0, depending on whether the outcome 

is a head or a tail: 

𝑋 = �1   𝑖𝑓 𝑎 ℎ𝑒𝑎𝑑
0    𝑖𝑓 𝑎 𝑡𝑎𝑖𝑙  

Its PMF is 
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𝑝𝑋(𝑥) = �
𝑃           𝑖𝑓 𝑥 = 1
1 − 𝑃    𝑖𝑓 𝑥 = 0 

 

9- Probability Density Function (PDF) 

A random variable X is called continuous if its probability law can be described 

in terms of a nonnegative function X, called the probability density function of 

X, or PDF for short, which satisfies 

𝑃(𝑋 ∈ 𝐵) = � 𝑓𝑋(𝑥)𝑑𝑥
𝐵

 

for every subset B of the real line. In particular, the probability that the value of 

X falls within an interval is 

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = �𝑓𝑋(𝑥)𝑑𝑥
𝑏

𝑎

 

and can be interpreted as the area under the graph of the PDF as shown 

 
More generally, we can consider a random variable X that takes values in 

an interval [a, b], and again assume that all subintervals of the same length 

are equally likely. We refer to this type of random variable as uniform or 

uniformly distributed. Its PDF has the form 
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𝑓𝑋(𝑥) = �𝑐           𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑏
0                 𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where c is constant 

1 = �𝑐𝑑𝑥
𝑏

𝑎

       1 = 1 = 𝑐 �𝑑𝑥
𝑏

𝑎

= 𝑐(𝑏 − 𝑎) 

𝑐 =
1

𝑏 − 𝑎 

 

Generalizing, consider a random variable X whose PDF has the piecewise constant 

form 

𝑓𝑋(𝑥) = �𝑐𝑖            𝑖𝑓 𝑎𝑖 ≤ 𝑥 ≤ 𝑎𝑖+1        𝑖 = 1, 2, … … . ,𝑛 − 1
𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where a1, a2,..., an are some scalars with ai <ai+1for all i, and c1,c2,...,cn are some 

nonnegative constants 

1 = � 𝑓𝑋𝑑𝑥

𝑎𝑛

𝑎1

   =   � � 𝑐𝑖𝑑𝑥

𝑎𝑖+1

𝑎1

= �𝑐𝑖(𝑎𝑖+1 − 𝑎𝑖)
𝑛−1

𝑖=1

𝑛−1

𝑖=1
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Chapter Two  

1- Digital Communication system 

The reliable transmission of information over noisy channels is one of the basic 

requirements of digital information and communication systems. Because of this 

requirement, modern communication systems rely heavily on powerful channel 

coding methodologies. For practical applications these coding schemes do not only 

need to have good coding characteristics with respect to the capability of detecting 

or correcting errors introduced on the channel. They also have to be efficiently 

implementable, e.g. in digital hardware within integrated circuits. In Figure 1 the 

basic structure of a digital communication system is shown which represents the 

architecture of the communication systems in use today. 

 

An important result of information theory is the finding that error-free transmission 

across a noisy channel is theoretically possible – as long as the information rate 

does not exceed the so-called channel capacity. In order to quantify this result, we 

need to measure information. Within Shannon’s information theory this is done by 

considering the statistics of symbols emitted by information sources. 
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2- Entropy 

In information theory, entropy is the average amount of information contained in 

each message received. Here, message stands for an event, sample or character 

drawn from a distribution or data stream. Entropy thus characterizes our 

uncertainty about our source of information. 

Self- information: 

In information theory, self-information is a measure of the information 

content associated with the outcome of a random variable. It is expressed in 

a unit of information, for example bits, nats, or Hartley, depending on the base of 

the logarithm used in its calculation. 

A bit is the basic unit of information in computing and digital communications. A 

bit can have only one of two values, and may therefore be physically implemented 

with a two-state device. These values are most commonly represented as 0 and 1. 

A nat is the natural unit of information, sometimes also nit or nepit, is a unit 

of information or entropy, based on natural logarithms and powers of e, rather than 

the powers of 2 and base 2 logarithms which define the bit. This unit is also known 

by its unit symbol, the nat.  

The hartley (symbol Hart) is a unit of information defined by International 

Standard IEC 80000-13 of the International Electrotechnical Commission. One 

hartley is the information content of an event if the probability of that event 

occurring is 1/10. It is therefore equal to the information contained in one decimal 

digit (or dit). 

1 Hart ≈ 3.322 Sh ≈ 2.303 nat. 
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The amount of self-information contained in a probabilistic event depends only on 

the probability of that event: the smaller its probability, the larger the self-

information associated with receiving the information that the event indeed 

occurred. 

Suppose that the source of information produces finite set of message 

𝑥1, 𝑥2, … … . 𝑥𝑛with prob. 𝑝(𝑥1),𝑝(𝑥2), … … … .𝑃(𝑥𝑛)  and such that 

�𝑃(𝑥𝑖) = 1
𝑛

𝑖=1

 

1- Information is zero if 𝑃(𝑥𝑖) = 1 (certain event) 

2- Information increase as 𝑃(𝑥𝑖) decrease to zero 

3- Information is a +ve quantity 

 
The log function satisfies all previous three points hence: 

𝐼(𝑥𝑖) = − log𝑎 𝑃(𝑥𝑖) 

Where 𝐼(𝑥𝑖) is self information of (𝑥𝑖) and if: 

i- If “a” =2 , then 𝐼(𝑥𝑖) has the unit of bits 

ii- If “a”= e = 2.71828, then 𝐼(𝑥𝑖) has the unit of nats 
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iii- If “a”= 10, then 𝐼(𝑥𝑖) has the unit of hartly 

Recall that log𝑎𝑥 = 𝑙𝑛𝑥
𝑙𝑛𝑎

 

Example 1:  

A fair die is thrown, find the amount of information gained if you are told that 4 

will appear. 

Solution: 

𝑃(1) = 𝑃(2) = ⋯… … . = 𝑃(6) =
1
6 

𝐼(4) = −log2 �
1
6� =

ln (1
6)

𝑙𝑛2 = 2.5849  𝑏𝑖𝑡𝑠 

Example 2: 

A biased coin has P(Head)=0.3. Find the amount of information gained if you are 

told that a tail will appear. 

Solution: 

𝑃(𝑡𝑎𝑖𝑙) = 1 − 𝑃(𝐻𝑒𝑎𝑑) = 1 − 0.3 = 0.7 

𝐼(𝑡𝑎𝑖𝑙) = −log2(0.7) = −
𝑙𝑛0.7
𝑙𝑛2 = 0.5145   𝑏𝑖𝑡𝑠 

4- Source Entropy: 

If the source produces not equiprobable messages then 𝐼(𝑥𝑖), 𝑖 = 1, 2, … … . . ,𝑛 

are different. Then the statistical average of 𝐼(𝑥𝑖) over i will give the average 

amount of uncertainty associated with source X. This average is called source 

entropy and denoted by 𝐻(𝑋), given by: 
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𝐻(𝑋) = �𝑃(𝑥𝑖)
𝑛

𝑖=1

𝐼(𝑥𝑖) 

∴    𝐻(𝑋) = −�𝑃(𝑥𝑖)
𝑛

𝑖=1

log𝑎 𝑃(𝑥𝑖) 

Example 3: 

Find the entropy of the source producing the following messages: 

𝑃𝑥1 = 0.25, 𝑃𝑥2 = 0.1,   𝑃𝑥3 = 0.15,   𝑎𝑛𝑑 𝑃𝑥4 = 0.5 

Solution: 

𝐻(𝑋) = −�𝑃(𝑥𝑖)
𝑛

𝑖=1

log𝑎 𝑃(𝑥𝑖)

= −
[0.25𝑙𝑛0.25 + 0.1𝑙𝑛0.1 + 0.15𝑙𝑛0.15 + 0.5𝑙𝑛0.5]

𝑙𝑛2  

𝐻(𝑋) = 1.7427 
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙 

Example 4: 

Find and plot the entropy of binary source. 

𝑃(0𝑇) + 𝑃(1𝑇) = 1 

𝐻(𝑋) = −[𝑃(0𝑇) log2 𝑃(0𝑇) + (1 − 𝑃(0𝑇)) log2(1 − 𝑃(0𝑇))] 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

If 𝑃(0𝑇) = 0.2, 𝑡ℎ𝑒𝑛 𝑃(1𝑇) = 1 − 0.2 = 0.8,𝑎𝑛𝑑 𝑝𝑢𝑡 𝑖𝑛 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛,  

𝐻(𝑋) = −[0.2 log2(0.2) + 0.8 log2(0.8)] = 0.7 

Not that H(X) is maximum equal to 

1(bit) if:  𝑃(0𝑇) = 𝑃(1𝑇) = 0.5 as 

shown in figure. 
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If all messages are equiprobable, then 𝑃(𝑥𝑖) = 1/𝑛 so hat: 

𝐻(𝑋) = 𝐻(𝑋)𝑚𝑎𝑥 = −[
1
𝑛 log𝑎 �

1
𝑛�] × 𝑛 = −log𝑎 �

1
𝑛� = log𝑎𝑛  𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

And 𝐻(𝑋) = 0 if one of the message has the prob of a certain event. 

 

5- Source Entropy Rate: 

It is the average rate of amount of information produced per second. 

𝑅(𝑋) = 𝐻(𝑋) × 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑦𝑚𝑏𝑜𝑙𝑠   =  
𝑏𝑖𝑡𝑠
𝑠𝑒𝑐 = 𝑏𝑝𝑠 

The unit of H(X) is bits/symbol and the rate of producing the symbols is 

symbol/sec, so that the unit of R(X) is bits/sec. 

Sometimes  𝑅(𝑋) = 𝐻(𝑋)
𝜏�

,     

𝜏̅ = �𝜏𝑖𝑃(𝑥𝑖)
𝑛

𝑖=1

 

𝜏̅ is the average time duration of symbols, 𝜏𝑖 is the time duration of the symbol 𝑥𝑖. 

Example 6: 

A source produces dots ‘.’ And dashes ‘-‘ with P(dot)=0.65. If the time duration of 

dot is 200ms and that for a dash is 800ms. Find the average source entropy rate. 

Solution: 

𝑃(𝑑𝑎𝑠ℎ) = 1 − 𝑃(𝑑𝑜𝑡) = 1 − 0.65 = 0.35 

𝐻(𝑋) = −[0.65log2(0.65) + 0.35log2(0.35)] = 0.934 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

𝜏̅ = 0.2 × 0.65 + 0.8 × 0.35 = 0.41 𝑠𝑒𝑐 
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𝑅(𝑋) =
𝐻(𝑋)
𝜏̅

=
0.34
0.41 = 2.278 𝑏𝑝𝑠 

6- Mutual Information: 

Consider the set of symbols 𝑥1, 𝑥2, … . , 𝑥𝑛, the 

transmitter 𝑇𝑥 my produce. The receiver 𝑅𝑥 may receive 

𝑦1, 𝑦2 … … … . 𝑦𝑚. Theoretically, if the noise and 

jamming, then the set X=setY. However and due to 

noise and jamming, there will be a conditional prob 

𝑃(𝑦𝑗 ∣ 𝑥𝑖): 

1- 𝑃(𝑥𝑖)  to be what is so called the apriori prob of the 

symbol 𝑥𝑖, which is the prob of selecting 𝑥𝑖 for transmission. 

2- 𝑃(𝑦𝑗 ∣ 𝑥𝑖) to be what is called the aposteriori prob of the symbol 𝑥𝑖 after the 

reception of 𝑦𝑗. 

The amount of information that 𝑦𝑗 provides about 𝑥𝑖 is called the mutual 

information between 𝑥𝑖 and 𝑦𝑖 . This is given by: 

𝐼(𝑥𝑖 ,𝑦𝑗) = log2 �
𝑎𝑝𝑜𝑠𝑡𝑒𝑟𝑜𝑟𝑖 𝑝𝑟𝑜𝑏
𝑎𝑝𝑟𝑖𝑜𝑟𝑖 𝑝𝑟𝑜𝑏 � = log2 �

𝑃� 𝑦𝑗 ∣∣ 𝑥𝑖 �
𝑃(𝑥𝑖)

� 

Properties of 𝑰(𝒙𝒊,𝒚𝒋): 

1- It is symmetric, 𝐼�𝑥𝑖 ,𝑦𝑗� = 𝐼(𝑦𝑗 ,𝑥𝑖). 

2- 𝐼�𝑥𝑖 ,𝑦𝑗� > 0 if aposteriori prob> apriori prob, 𝑦𝑗 provides +ve information 

about 𝑥𝑖. 

3- 𝐼�𝑥𝑖 ,𝑦𝑗� = 0 if aposteriori prob= apriori prob, which is the case of statistical 

independence when 𝑦𝑗 provides no information about 𝑥𝑖. 

4- 𝐼�𝑥𝑖 ,𝑦𝑗� < 0 if aposteriori prob< apriori prob, 𝑦𝑗 provides -ve information 

about 𝑥𝑖, or 𝑦𝑗  adds ambiguity. 
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Example 7:  

Show that I(X, Y) is zero for extremely noisy channel. 

Solution: 

 For extremely noisy channel, then 𝑦𝑗gives no information about 𝑥𝑖 the receiver 

can’t decide anything about 𝑥𝑖 as if we transmit a deterministic signal 𝑥𝑖 but the 

receiver receives noise like signal 𝑦𝑗 that is completely has no correlation with 𝑥𝑖. 

Then 𝑥𝑖 and 𝑦𝑗 are statistically independent so that 

𝑃� 𝑥𝑖 ∣∣ 𝑦𝑗 � = 𝑃(𝑥𝑖)𝑎𝑛𝑑 𝑃�𝑦𝑗 ∣∣ 𝑥𝑖 � = 𝑃(𝑥𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗, 𝑡ℎ𝑒𝑛: 

𝐼�𝑥𝑖 ,𝑦𝑗� = log21 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 & 𝑗, 𝑡ℎ𝑒𝑛 𝐼(𝑋,𝑌) = 0 

 

7- Transinformation (average mutual information): 

It is the statistical average of all pair 𝐼(𝑥𝑖 ,𝑦𝑗) , 𝑖 = 1, 2, … . . ,𝑛, 𝑗 =

1, 2, … . . ,𝑚. 

This is denoted by 𝐼(𝑋,𝑌) and is given by: 

𝐼(𝑋,𝑌) = ��𝐼(𝑥𝑖 ,𝑦𝑗)𝑃(𝑥𝑖 ,𝑦𝑗)
𝑚

𝑗=1

𝑛

𝑖=1

 

𝐼(𝑋,𝑌) = ��𝑃�𝑥𝑖 ,𝑦𝑗�
𝑚

𝑗=1

𝑛

𝑖=1

log2 �
𝑃�𝑦𝑗 ∣∣ 𝑥𝑖 �
𝑃�𝑦𝑗�

�
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙 

or 

𝐼(𝑋,𝑌) = ��𝑃(𝑥𝑖 ,𝑦𝑗)
𝑚

𝑗=1

𝑛

𝑖=1

log2 �
𝑃� 𝑥𝑖 ∣∣ 𝑦𝑗 �
𝑃(𝑥𝑖)

�  𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

Expand above equation: 
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𝐼(𝑋,𝑌) = ��𝑃(𝑥𝑖,𝑦𝑗)
𝑚

𝑗=1

𝑛

𝑖=1

log2 �𝑃� 𝑥𝑖 ∣∣ 𝑦𝑗 �� −��𝑃(𝑥𝑖,𝑦𝑗)
𝑚

𝑗=1

𝑛

𝑖=1

log2(𝑃(𝑥𝑖)) 

And we have 

�𝑃(𝑥𝑖 ,𝑦𝑗)
𝑚

𝑗=1

= 𝑝(𝑥𝑖) 

And by substituting: 

𝐼(𝑋,𝑌) = ��𝑃(𝑥𝑖,𝑦𝑗)
𝑚

𝑗=1

𝑛

𝑖=1

log2 �𝑃� 𝑥𝑖 ∣∣ 𝑦𝑗 �� −�𝑃(𝑥𝑖)
𝑛

𝑖=1

log2(𝑃(𝑥𝑖)) 

Or      𝐼(𝑋,𝑌) = 𝐻(𝑋) −𝐻(𝑋 ∣ 𝑌) 

Similarly   𝐼(𝑋,𝑌) = 𝐻(𝑌)−𝐻(𝑌 ∣ 𝑋)  

 

8- Marginal Entropies: 

Marginal entropies is a term usually used to denote both source entropy H(X) 

defined as before and the receiver entropy H(Y) given by: 

  

𝐻(𝑌) = −�𝑃�𝑦𝑗�
𝑚

𝑗=1

log2𝑃�𝑦𝑗�              
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙 

9- Joint entropy and conditional entropy: 

The average information associated with the pair (𝑥𝑖 ,𝑦𝑗) is called joint or 

system entropy H(X,Y): 

𝐻(𝑋,𝑌) = 𝐻(𝑋𝑌) = −��𝑃�𝑥𝑖 ,𝑦𝑗�
𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃�𝑥𝑖 ,𝑦𝑗�       𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙       
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The average amount of information associated with the pairs 𝑃�𝑥𝑖 ∣  𝑦𝑗� and 

𝑃�𝑦𝑗 ∣  𝑥𝑖�  are called conditional entropies 𝐻(𝑌 ∣ 𝑋 )𝑎𝑛𝑑 𝐻(𝑋 ∣ 𝑌), and given 

by: 

𝐻(𝑌 ∣ 𝑋) = −��𝑃�𝑥𝑖 ,𝑦𝑗�
𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃�𝑦𝑗 ∣ 𝑥𝑖�       𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

Return to first equation, we have: 𝑃�𝑥𝑖 ,𝑦𝑗� = 𝑃(𝑥𝑖)𝑃�𝑦𝑗 ∣ 𝑥𝑖�, put inside log 

term 

𝐻(𝑋,𝑌) = −��𝑃�𝑥𝑖 ,𝑦𝑗�
𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑥𝑖)−��𝑃�𝑥𝑖 ,𝑦𝑗�
𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃�𝑦𝑗 ∣ 𝑥𝑖� 

But 

�𝑃�𝑥𝑖 ,𝑦𝑗�
𝑚

𝑗=1

= 𝑃(𝑥𝑖) 

Put it in above equation yields: 

𝐻(𝑋,𝑌) = −�𝑃(𝑥𝑖)
𝑛

𝑖=1

log2𝑃(𝑥𝑖) −��𝑃�𝑥𝑖 ,𝑦𝑗�
𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃�𝑦𝑗 ∣ 𝑥𝑖� 

So that  𝐻(𝑋,𝑌) = 𝐻(𝑋) + 𝐻(𝑌 ∣ 𝑋) 

 

Example 8: 

The joint probability of a system is given by: 

 

𝑃(𝑋,𝑌) =
𝑥1
𝑥2
𝑥3
�

0.5           0.25
0           0.125

0.0625    0.0625
� 

Find: 
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1- Marginal entropies.       

2- Joint entropy 

3- Conditional entropies. 

4- The mutual information between x1 and y2. 

5- The transinformation. 

6- Draw the channel model. 

1- 𝑃(𝑋) = � 𝑥1 𝑥2 𝑥3
0.75 0.125 0.125�        𝑃(𝑌) = � 𝑦1 𝑦2

0.5625 0.4375� 

𝐻(𝑋) = −[0.75 ln(0.75) + 2 × 0.125 ln(0.125)]/𝑙𝑛2

= 1.06127 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙  

𝐻(𝑌) = −[0.5625 ln(0.5625) + 0.4375 ln(0.4375)]/𝑙𝑛2

= 0.9887 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙  

2-  

𝐻(𝑋,𝑌) = −��𝑃�𝑥𝑖 ,𝑦𝑗�
𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃�𝑥𝑖 ,𝑦𝑗� 

𝐻(𝑋,𝑌)

= −
[0.5ln(0.5) + 0.25 ln(0.25) + 0.125 ln(0.125) + 2 × 0.0625 ln(0.0625)]

𝑙𝑛2
= 1.875            𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

 

3- 𝐻(𝑌 ∣ 𝑋 ) = 𝐻(𝑋,𝑌)−𝐻(𝑋) = 1.875 − 1.06127 = 0.813  𝑏𝑖𝑡𝑠
𝑠𝑦𝑚𝑏𝑜𝑙

 

𝐻(𝑋 ∣ 𝑌 ) = 𝐻(𝑋,𝑌)−𝐻(𝑌) = 1.875 − 0.9887 = 0.886 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

4- 𝐼(𝑥1, 𝑦2) = log2 �
𝑃(𝑥1∣∣𝑦2 )
𝑃(𝑥1)

�  , 𝑏𝑢𝑡 𝑃( 𝑥1 ∣∣ 𝑦2 ) = 𝑃(𝑥1,𝑦2)/𝑃(𝑦2) 

𝐼(𝑥1, 𝑦2) = log2 �
𝑃(𝑥1,𝑦2)

𝑃(𝑥1)𝑃( 𝑦2)
�=log2

0.25
0.75×0.4375

= −0.3923   𝑏𝑖𝑡𝑠  

That means y2 gives ambiguity about x1 
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5-  𝐼(𝑋,𝑌) = 𝐻(𝑋) −𝐻(𝑋 ∣ 𝑌 ) = 1.06127 − 0.8863 = 0.17497 𝑏𝑖𝑡𝑠/

𝑠𝑦𝑚𝑏𝑜𝑙. 

6- To draw the channel model, must find P(Y∣X) matrix from P(X, Y) 

matrix by dividing its rows by the corresponding P(xi): 

𝑃(𝑋 ∣  𝑌) =
𝑥1
𝑥2
𝑥3
�

0.5/0.75           0.25/0.75
0/0.125           0.125/0.125

0.0625/0.125    0.0625/0.125
� =

𝑥1
𝑥2
𝑥3
�

2/3        1/3
0               1

0.5           0.5
� 

Channel: 

In telecommunications and computer networking, a communication channel 

or channel, refers either to a physical transmission medium such as a wire, or to 

a logical connection over a multiplexed medium such as a radio channel. A 

channel is used to convey an information signal, for example a digital bit stream, 

from one or several senders (or transmitters) to one or several receivers. A channel 

has a certain capacity for transmitting information, often measured by 

its bandwidth in Hz or its data rate in bits per second. 

 

Binary symmetric channel (BSC) 

 It is a common communications channel model used in coding 

theory and information theory. In this model, a transmitter wishes to send abit (a 

zero or a one), and the receiver receives a bit. It is assumed that the bit 

is usually transmitted correctly, but that it will be "flipped" with a 

small probability (the "crossover probability").  
 

 

 

 1-P 

P 

P 

1-P 0 

1 

0 

1 
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A binary symmetric channel with crossover probability p denoted by BSCp, 

is a channel with binary input and binary output and probability of error p; that is, 

if X is the transmitted random variable and Y the received variable, then the 

channel is characterized by the conditional probabilities: 

Pr(𝑌 = 0 ∣ 𝑋 = 0 ) = 1 − 𝑃 

Pr(𝑌 = 0 ∣ 𝑋 = 1 ) = 𝑃 

Pr(𝑌 = 1 ∣ 𝑋 = 0 ) = 𝑃 

Pr(𝑌 = 1 ∣ 𝑋 = 1 ) = 1 − 𝑃 

 

Ternary symmetric channel (TSC): 

The transitional probability of TSC is: 

𝑃(𝑌 ∣ 𝑋 ) =
𝑥1
𝑥2
𝑥3
�

𝑦1               𝑦2         𝑦3
1 − 2𝑃𝑒       𝑃𝑒            𝑃𝑒  
𝑃𝑒           1 − 2𝑃𝑒      𝑃𝑒
𝑃𝑒            𝑃𝑒     1− 2𝑃𝑒

� 

The TSC is symmetric but not very practical since practically 𝑥1 and 𝑥3 are not 

affected so much as 𝑥2. In fact the interference between 𝑥1 and 𝑥3 is much less 

than the interference between 𝑥1 and 𝑥2 or   𝑥2 and 𝑥3. 

  

 

 

 

Pe 

Pe 

1-2Pe 

1-2Pe 

1-2Pe X1 Y1 

Y2 X2 

X3 Y3 
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Hence the more practice but nonsymmetric channel has the trans prob. 

𝑃(𝑌 ∣ 𝑋 ) =
𝑥1
𝑥2
𝑥3
�

𝑦1               𝑦2         𝑦3
1 − 𝑃𝑒       𝑃𝑒            0  
𝑃𝑒           1 − 2𝑃𝑒      𝑃𝑒
0           𝑃𝑒      1 − 𝑃𝑒

� 

Where 𝑥1 interfere with 𝑥2 exactly the same as interference between 𝑥2 and 𝑥3, but 

𝑥1 and 𝑥3 are not interfere. 

 

  

 

 

 

Special Channels: 

1-  Lossless channel: It has only one nonzero element in each column of the 

transitional matrix P(Y∣X). 

𝑃(𝑌 ∣ 𝑋 ) =
𝑥1
𝑥2
𝑥3
�

𝑦1               𝑦2         𝑦3          𝑦4        𝑦5
3/4                1/4           0             0           0  
0                0            1/3            2/3          0

0                 0             0             0          1

� 

This channel has H(X∣Y)=0 and I(X, Y)=H(X) with zero losses entropy. 

2- Deterministic channel: It has only one nonzero element in each row, the 

transitional matrix P(Y∣X), as an example: 

Pe 

Pe 

1-2Pe 

1-Pe 

X2 

1-Pe 

X3 

Y2 

Y3 

Y1 X1 
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𝑃(𝑌 ∣ 𝑋 ) =
𝑥1
𝑥2
𝑥3

⎣
⎢
⎢
⎢
⎢
⎡
𝑦1         𝑦2         𝑦3    
 1           0            0   
1           0           0  
0           0            1 
0           1            0
0           1            0 ⎦

⎥
⎥
⎥
⎥
⎤

 

This channel has H(Y∣X)=0 and I(Y, X)=H(Y) with zero noisy entropy. 

3- Noiseless channel: It has only one nonzero element in each row and column, 

the transitional matrix P(Y∣X), i.e. it is an identity matrix, as an example: 

𝑃(𝑌 ∣ 𝑋 ) =
𝑥1
𝑥2
𝑥3

�

𝑦1         𝑦2         𝑦3 
1          0           0
0          1           0
0          0           1

� 

This channel has H(Y∣X)= H(X∣Y)=0 and I(Y, X)=H(Y)=H(X). 

 

Channel Capacity (Discrete channel) 

This is defined as the maximum of I(X,Y): 

𝐶 = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = max[𝐼(𝑋,𝑌)]            𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

Physically it is the maximum amount of information each symbol can carry to the 

receiver. Sometimes this capacity is also expressed in bits/sec if related to the rate 

of producing symbols r: 

𝑅(𝑋,𝑌) = 𝑟 × 𝐼(𝑋,𝑌)          𝑏𝑖𝑡𝑠/ sec     𝑜𝑟 𝑅(𝑋,𝑌) = 𝐼(𝑋,𝑌)/ 𝜏̅  

1- Channel capacity of Symmetric channels:  

The symmetric channel have the following condition: 

a- Equal number of symbol in X&Y, i.e. P(Y∣X) is a square matrix. 

b- Any row in P(Y∣X) matrix comes from some permutation of other rows. 
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For example the following conditional probability of various channel types as 

shown: 

a- 𝑃(𝑌 ∣ 𝑋 ) = �0.9 0.1
0.1 0.9� is a BSC, because it is square matrix and 1st row is 

the permutation of 2nd row. 

b- 𝑃(𝑌 ∣ 𝑋 ) = �
0.9 0.05 0.05

0.05 0.9 0.05
0.05 0.05 0.9

� is TSC, because it is square matrix and 

each row is a permutation of others. 

c- 𝑃(𝑌 ∣ 𝑋 ) = �0.8 0.1 0.1
0.1 0.8 0.1� is a non-symmetric since since it is not square 

although each row is permutation of others. 

d- 𝑃(𝑌 ∣ 𝑋 ) = �
0.8 0.1 0.1
0.1 0.7 0.2
0.1 0.1 0.8

� is a non-symmetric although it is square since 

2nd row is not permutation of other rows. 

The channel capacity is defined as max [𝐼(𝑋,𝑌)]: 

𝐼(𝑋,𝑌) = 𝐻(𝑌)−𝐻(𝑌 ∣ 𝑋 ) 

𝐼(𝑋,𝑌) = 𝐻(𝑌) + ��𝑃�𝑥𝑖 ,𝑦𝑗�
𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃�𝑦𝑗 ∣ 𝑥𝑖� 

 

But we have 

𝑃�𝑥𝑖 ,𝑦𝑗� = 𝑃(𝑥𝑖)𝑃�𝑦𝑗 ∣ 𝑥𝑖�        𝑝𝑢𝑡 𝑖𝑛 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑦𝑖𝑒𝑙𝑑𝑒𝑠:  

 

𝐼(𝑋,𝑌) = 𝐻(𝑌) + ��𝑃(𝑥𝑖)𝑃�𝑦𝑗 ∣ 𝑥𝑖�
𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃�𝑦𝑗 ∣ 𝑥𝑖� 

If the channel is symmetric the quantity: 
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�𝑃�𝑦𝑗 ∣ 𝑥𝑖�log2𝑃�𝑦𝑗 ∣ 𝑥𝑖� = 𝐾
𝑚

𝑗=1

 

Where K is constant and independent of the row number i so that the 

equation becomes: 

𝐼(𝑋,𝑌) = 𝐻(𝑌) + 𝐾�𝑃(𝑥𝑖)
𝑛

𝑖=1

 

Hence          𝐼(𝑋,𝑌) = 𝐻(𝑌) + 𝐾         for symmetric channels 

Max of 𝐼(𝑋,𝑌) = max[𝐻(𝑌) + 𝐾] = max[𝐻(𝑌)] + 𝐾 

When Y has equiprobable symbols then max[𝐻(𝑌)] = 𝑙𝑜𝑔2𝑚 

Then  

𝐼(𝑋,𝑌) = 𝑙𝑜𝑔2𝑚 + 𝐾 

Or 

𝐶 = 𝑙𝑜𝑔2𝑚 + 𝐾 

Example 9: 

For the BSC shown:  

 

 

Find the channel capacity and efficiency if 𝐼(𝑥1) = 2𝑏𝑖𝑡𝑠 

Solution: 

𝑃(𝑌 ∣ 𝑋 ) = �0.7 0.3
0.3 0.7� 

Since the channel is symmetric then  

𝐶 = 𝑙𝑜𝑔2𝑚 + 𝐾      and 𝑛 = 𝑚 

 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑎𝑛𝑑 𝑚 𝑎𝑟𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑐𝑜𝑙𝑢𝑚𝑛 𝑟𝑒𝑝𝑒𝑠𝑡𝑖𝑣𝑒𝑙𝑦  

𝐾 = 0.7𝑙𝑜𝑔20.7 + 0.3𝑙𝑜𝑔20.3 = −0.88129 

0.7 

0.7 Y1 

Y2 X2 

X1 
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𝐶 = 1 − 0.88129 = 0.1187   𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

The channel efficiency  𝜂 = 𝐼(𝑋,𝑌)
𝐶

 

𝐼(𝑥1) = −𝑙𝑜𝑔2𝑃(𝑥1) = 2 

𝑃(𝑥1) = 2−2 = 0.25    𝑡ℎ𝑒𝑛 𝑃(𝑋) = [0.25     0.75]𝑇 

And we have 𝑃�𝑥𝑖 ,𝑦𝑗� = 𝑃(𝑥𝑖)𝑃�𝑦𝑗 ∣ 𝑥𝑖� so that 

𝑃(𝑋,𝑌) = �0.7 × 0.25 0.3 × 0.25
0.3 × 0.75 0.7 × 0.75�=�

0.175 0.075
0.225 0.525� 

𝑃(𝑌) = [0.4     0.6]    → 𝐻(𝑌) = 0.97095 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

𝐼(𝑋,𝑌) = 𝐻(𝑌) + 𝐾 = 0.97095 − 0.88129 = 0.0896 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

Then 𝜂 = 0.0896
0.1187

= 75.6% 

2-  Channel capacity of nonsymmetric channels:  

We can find the channel capacity of nonsymmetric channel by the following 

steps: 

a- Find I(X, Y) as a function of input prob: 

𝐼(𝑋,𝑌) = 𝑓(𝑃(𝑥1),𝑃(𝑥2) … … … ,𝑃(𝑥𝑛)) 

And use the constraint to reduce the number of variable by 1. 

b- Partial differentiate I(X, Y) with respect to (n-1) input prob., then equate 

these partial derivatives to zero. 

c- Solve the (n-1) equations simultaneously then find 

𝑃(𝑥1),𝑃(𝑥2) … . . . . ,𝑃(𝑥𝑛) that gives maximum I(X, Y). 

d- Put resulted values of input prob. in the function given in step 1 to find 

𝐶 = max[𝐼(𝑋,𝑌)]. 

Example 10: 

Find the channel capacity for the channel having the following transition: 
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𝑃(𝑌 ∣ 𝑋 ) = �0.7 0.3
0.1 0.9� 

Solution: First not that the channel is not symmetric since the 1st row is not 

permutation of 2nd row. 

a- Let 𝑃(𝑥1) = 𝑃,    𝑡ℎ𝑒𝑛 𝑃(𝑥2) = 1 − 𝑃, hence instead of having two 

variable, we will have only one variable P. 

𝑃(𝑋,𝑌) = 𝑃(𝑋) × 𝑃(𝑌 ∣ 𝑋 ) 

∴      𝑃(𝑋,𝑌) = � 0.7𝑃 0.3𝑃
0.1(1− 𝑃) 0.9(1 − 𝑃)� 

From above results 𝑃(𝑌) = [0.1 + 0.6𝑃      0.9− 0.6𝑃] 

We have  

𝐻(𝑌 ∣ 𝑋) = −��𝑃�𝑥𝑖 ,𝑦𝑗�
𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃�𝑦𝑗 ∣ 𝑥𝑖�       

𝐻(𝑌 ∣ 𝑋) = −[0.7𝑃𝑙𝑛0.7 + 0.3𝑃𝑙𝑛0.3 + 0.1(1 − 𝑃)𝑙𝑛0.1 + 0.9(1 − 𝑃)𝑙𝑛0.9]/𝑙𝑛2 

= −[0.7𝑃𝑙𝑛0.7 + 0.3𝑃𝑙𝑛0.3 + 0.1𝑙𝑛0.1 − 0.1𝑃𝑙𝑛0.1 + 0.9𝑙𝑛0.9 − 0.9𝑃𝑙𝑛0.9]𝑙𝑛2 

b- 𝜕𝐻(𝑌∣𝑋)
𝜕𝑃

= 𝑑𝐻(𝑌∣𝑋)
𝑑𝑃

= −[0.7𝑙𝑛0.7 + 0.3𝑙𝑛0.3 − 0.1𝑙𝑛0.1 − 0.9𝑙𝑛0.9]/𝑙𝑛2 

𝑑𝐻(𝑌 ∣ 𝑋)
𝑑𝑃

= −[−0.2858781]/𝑙𝑛2 

𝐻(𝑌) = −�𝑃�𝑦𝑗�
𝑚

𝑗=1

log2𝑃�𝑦𝑗� 

Then  𝐻(𝑌) = −[(0.1 + 0.6𝑃)𝑙𝑛(0.1 + 0.6𝑃) + (0.9 − 0.6𝑃)𝑙𝑛(0.9 − 0.6𝑃)]/𝑙𝑛2 
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𝑑𝐻(𝑌)
𝑑𝑃

= −[0.6𝑙𝑛(0.1 + 0.6𝑃) + 0.6 − 0.6𝑙𝑛(0.9 − 0.6𝑃) − 0.6]/𝑙𝑛2 

∴  
𝑑𝐻(𝑌)
𝑑𝑃

= −
[0.6{𝑙𝑛(0.1 + 0.6𝑃) − 𝑙𝑛(0.9 − 0.6𝑃)}]

𝑙𝑛2
= −

�0.6 ln �0.1 + 0.6𝑃
0.9 − 0.6𝑃��
𝑙𝑛2

 

c- We have  𝐼(𝑋,𝑌) = 𝐻(𝑌)−𝐻(𝑌 ∣ 𝑋 ) 

So that           𝐼(𝑌,𝑋)
𝑑𝑃

= 𝑑𝐻(𝑌)
𝑑𝑃

− 𝑑𝐻(𝑌∣𝑋)
𝑑𝑃

= 0 

−
�0.6 ln �0.1 + 0.6𝑃

0.9 − 0.6𝑃��
𝑙𝑛2

+
0.285781

𝑙𝑛2
= 0 

−�0.6 ln �
0.1 + 0.6𝑃
0.9 − 0.6𝑃

�� = −0.285781 

ln �
0.1 + 0.6𝑃
0.9 − 0.6𝑃

� = 0.47630167 

�
0.1 + 0.6𝑃
0.9 − 0.6𝑃

� = 𝑒0.47630167 = 1.6101087 

0.1 + 0.6𝑃 = 1.6101087(0.9 − 0.6𝑃) 

∴    𝑃 ≅ 0.862      𝑝𝑢𝑡 𝑖𝑛 𝐻(𝑌)𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑔𝑒𝑡  

𝐻(𝑌) = −[(0.1 + 0.6 × 0.862)𝑙𝑛(0.1 + 0.6 × 0.862)

+ (0.9 − 0.6 × 0.862)𝑙𝑛(0.9 − 0.6 × 0.862)]/𝑙𝑛2 

∴ 𝐻(𝑌) = 0.96021   𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

Similarly we can substitute in H(Y∣ X)  equation to get  

H( Y ∣  X ) = 0.66354      bits/symbol 
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d-  

𝐶 = max[𝐼(𝑋,𝑌)] = 0.96021 − 0.66354 = 0.29666 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙.  

 

 

 

 

Shannon’s theorem: 

1- A given communication system has a maximum rate of information C 

known as the channel capacity. 

2- If the information rate R is less than C, then one can approach arbitrarily 

small error probabilities by using intelligent coding techniques. 

3- To get lower error probabilities, the encoder has to work on longer blocks of 

signal data. This entails longer delays and higher computational 

requirements. 

Thus, if R ≤ C then transmission may be accomplished without error in the 

presence of noise. The negation of this theorem is also true: if R > C, then 

errors cannot be avoided regardless of the coding technique used. 

Consider a bandlimited Gaussian channel operating in the presence of additive 

Gaussian noise: 

 

The Shannon-Hartley theorem states that the channel capacity is given by: 
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𝐶 = 𝐵𝑙𝑜𝑔2 �1 +
𝑆
𝑁� 

Where C is the capacity in bits per second, B is the bandwidth of the channel in 

Hertz, and S/N is the signal-to-noise ratio. 

Nyquist Rate: 

When a continuous function, x(t), is sampled at a constant rate, 

fs (samples/second), there is always an unlimited number of other continuous 

functions that fit the same set of samples. But only one of them is band-limited to 

½ fs (hertz), which means that its Fourier transform, X(f), is 0 for all |f| ≥ 

½ fs,  which is called the Nyquist criterion. In terms of a function's 

own bandwidth (B), the Nyquist criterion is often stated as fs > 2B.  And 2B is 

called the Nyquist rate for functions with bandwidth B. When the Nyquist criterion 

is not met (B > ½ fs), a condition called aliasing occurs, which results in some 

inevitable differences between x(t) and a reconstructed function that has less 

bandwidth.  

Hartley's law 
If the amplitude of the transmitted signal is restricted to the range of [−A ... +A] 

volts, and the precision of the receiver is ±ΔV volts, then the maximum number of 

distinct pulses M is given by 

 

Hartley constructed a measure of the line rate R as: 

 
Where fp is the pulse rate, also known as the symbol rate, in symbols/second  
 
 

2017/1/11                                                   30 NS 

 

http://en.wikipedia.org/wiki/Bandlimited
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
http://en.wikipedia.org/wiki/Aliasing


 
 
 
 
 
 
 
 

 

2017/1/11                                                   31 NS 

 


	Hartley's law

